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1 Introduction

This guide intends to teach the reader the basics of spectral methods as a
means for solving partial differential equations (PDEs). The main applica-
tion that will be taught is that of fluid flow, but this is far from the limit of
this powerful technique.

My intention is that this guide can be read and understood by anybody
who knows multivariable calculus. However, familiarity with the Navier-
Stokes equations, basic numerical ODE solving methods and the Fourier
transform will definitely add to the reader’s understanding. If you ever see
a mistake, find something unclear, or feel that a part of these notes is just not
up to scratch, please send me a message via email (tstopford17@gmail.com)
and I will try my best to fix it.

With all that being said, I hope this guide helps you.

1.1 Structure of the guide

Through this guide, we will work up to solving the incompressible Navier-
Stokes equations in 2-D using spectral methods. These are given by

ut + u · ∇u = −∇p+ g + ν∇2u (1)

∇ · u = 0 (2)

where u(x, y, t) denotes the velocity of an eulerian fluid element located at
position (x, y) at time t, p = p(x, y, t) is the pressure field, and g = g(x, y, t)
is the force field. We refer to 1 as momentum balance and 2 as mass balance
or incompressibility In this guide, we will not use vector calculus notation in
this guide though for the sake of clarity. Expanding out the vector calculus

1



notation, we get the equations in this form

ut + uux + vuy = −px + gx + ν (uxx + uyy)

vt + uvx + vvy = −py + gy + ν (vxx + vyy)

ux + vy = 0

Note the subscripts x and y denote derivatives except for g, where they are
components. We will be solving these with periodic boundary conditions.
This may be used to approximate static or uniform flow at infinity. In
general, spectral methods may be used for problems that are not periodic,
but that is not yet covered here.

The first chapter will very quickly cover the Fourier transform. The fact
that periodic functions may be written as a series of exponentials, whose
derivative is easy to compute, is a key fact exploited by spectral methods
and a big part of why they are so powerful.

The second chaper will cover some basic methods for numerically solving
ODEs. This is important because writing a PDE in terms of Fourier series
leaves us with many ODEs which we have to solve by discretising time.

At this stage we will be ready to solve our first PDE. This will be the
1-D heat equation

ut = νuxx

We will then move on to the 1-D Burgher equation

ut + uux = νuxx

after this we will solve the 2-D Burgher equation

ut + uux + vuy = ν (uxx + uyy)

vt + uvx + vvy = ν (vxx + vyy)

and then we will cover the projection method to enforce incompressibility.
At this point we will have everything we need to simulate fluids in 2-D.

2 A quick introduction to the Fourier transform

Here we will quickly brush over a bit of the maths needed to use spectral
methods. The rigour of this is too deep to get into in this guide, but an in-
terested reader should look for resources on Functional analysis and Fourier
analysis. Maybe one day I will make something covering these topics, maybe
I won’t, maybe I already have. That’s the magic of the version of me writing
these notes and you occupying different points in time.
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2.1 Fourier Series

All functions we are interested in approximating will have the following
properties:

� Their spatial domain will be the closed interval [a, b] or the closed
rectangle [a, b]× [c, d] and their time domain will be [0, T ].

� They are periodic in their spatial domain. That is f(a, t) = f(b, t)
for all t ∈ [0, T ] for a function of a 1-D spatial domain, or f(a, y, t) =
f(b, y, t) and f(x, c, t) = f(x, d, t) for all y ∈ [c, d], x ∈ [a, b] and
t ∈ [0, T ] for a function of a 2-D spatial domain.

� They are Lebesgue square-intgrable. In our context we don’t need to
worry about this, but what it essentially means is that it doesn’t have
too many discontinuities.

Note. Another way of expressing the third point is that the functions are
elements of L2(A) where A = [a, b] or [a, b]× [c, d]. This is defined to be the
space of functions that are integrable and

∫
a |f |

2 < ∞.
This is a Hilbert space and has the following inner product

⟨f, g⟩ =
∫
A
fg

where g is the complex conjugate of g. Typically, L2(A) denotes the space
of such functions that are real valued, while L2(A,C) denotes the space of
such functions that are complex valued.

To read more about Lebesgue spaces and integrability, the reader should
look for resources on the topic of measure theory.

We will assume that these properties holds for all functions that we
refer to from now on. The following are some key facts about these types
of functions that will be instrumental later on. For simplicity, these facts
will be stated in the context of functions with one spatial dimension. Very
similar versions of them hold for functions with 2 spatial dimensions, but
we will deal with them when we get to it.

Key Fact 2.1. All such functions f = f(x) where x is our spatial variable

may be uniquely written in the form f(x) =
∑∞

n=−∞ f̂ne
i2πnx

L , where L =
b− a.

This is known as the Fourier expansion of f , and the f̂n ∈ C are known
as the Fourier coefficients of f . We may use notation k = 2π

L or kn = 2πn
L

for convenience.
An extension of this is that for a function that varies with time we may

write f(x, t) =
∑∞

n=−∞ f̂n(t)e
i2πnx

L where the f̂n are functions of time only.
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It is this fact that permits the power of spectral methods. Writing func-
tions this way makes it very easy to write down their time and spatial
derivatives.

Key Fact 2.2. All of these coefficients are given by the formula f̂n =∫ b
a f(x)e−iknxdx. Note that this is the inner product of f and eiknx on
L2([a, b],C).

In other words, our Fourier expansion is given by

f =
∞∑

n=−∞
⟨f, eiknx⟩eiknx

.

Note. The process of obtaining the Fourier coefficients of f is known as the
Fourier transform.

Since we will be solving for these functions computationally, we could
never store the values of all of these Fourier coefficients. This is where the
following fact is useul.

Key Fact 2.3. If we can only use a finite number of Fourier coefficients, say,
for some even N we can only use the coefficients −N/2, . . . , N/2-th coeffi-
cients, then the best approximation of f in this basis is given by truncating
the full Fourier series. That is, we should approximate f =

∑∞
n=−∞ f̂ne

iknx

by f̃ =
∑N/2

n=−N/2 f̂ne
iknx.

Note. For real valued functions, the imaginary parts of the Fourier coeffi-

cients must cancel out. The only way that this can happen is if f̂n = f̂−n

for all positive n. This fact is known as the hermitian symmetry and may
be used by a Fourier transform library to save memory and processing time.

2.2 The discrete Fourier transform

Again, since we are working computationally, the domain of our functions
is not a continuum but in fact a discrete grid. Again we will look at things
in the context of a function with a 1-D spatial domain.

We will always assume a uniform grid, (a = x1, x2, . . . , xN = b) with
spacing ∆x between gridpoints. It is worth noting that the word grid refers
to the division of our spacial domain but does not include the time domain.

In this context, we cannot evaluate a function f on all of [a, b] but instead
only sample it at the gridpoints. We will write fi = f(xi). To approximate
the integral of a function f on [a, b] using this grid, we use the approximation∫ b
a f(x)dx ≈

∑N
i=1 fi.

This leads us to the discrete Fourier transform, which is what Fourier
transform libraries actually perform. The Fourier coefficients of a function
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defined by a grid are given by

f̂n =

N∑
j=1

fie
−iknxj∆x

It is worth noting that the process of obtaining the gridpoint values in
physical space is known as the inverse (discrete) Fourier transform and is
given by

f̂j =

N/2∑
n=−N/2

f̂ne
iknxj∆x

Most fast Fourier transform (FFT) libraries will store the same amount
of Fourier coefficients as there are spacial gridpoints (or +1) by default. It
doesn’t make sense to store any more than this since we don’t have enough
grid data for the coefficients to have any real meaning beyond this amount.

3 Simple numerical solvers of ODEs

4 1-D problems

Now that we know enough about the fourier transform and the discrete
Fourier transform, we can do our first example of using spectral methods.

4.1 The heat equation

The 1-D heat equation is given by

ut = νuxx

where u : [a, b]× [0, T ] → R satisfies u(a) = u(b) and u(x, t = 0) = u0(x).
To solve this, we use the fact that u(x, t) =

∑∞
n=−∞ ûn(t)e

iknx to see
that

ut(x, t) =
∂

∂t

( ∞∑
n=−∞

ûn(t)e
iknx

)
=

∞∑
n=−∞

∂

∂t

(
ûn(t)e

iknx
)

=

∞∑
n=−∞

û′n(t)e
iknx

where f ′ = df
dt , and

uxx =
∂2

∂x2

( ∞∑
n=−∞

ûn(t)e
iknx

)
=

∞∑
n=−∞

∂2

∂x2

(
ûn(t)e

iknx
)

=
∞∑

n=−∞
−(kn)2ûn(t)e

iknx

5



so our 1-D heat equation becomes

∞∑
n=−∞

(
û′n(t) + (kn)2ûn(t)

)
eiknx = 0

with initial conditions

∞∑
n=−∞

(ûn(0)− û0n) e
iknx = 0

Observe that this means the LHS of both expressions is the fourier expansion
of 0. Since the fourier expansion is unique, this must mean that each term
in the fourier series in the LHS is equal to 0.

That is, for each n ∈ Z we have û′n+(kn)2ûn(t) = 0 with initial conditions
ûn(0) = û0n. We have turned our PDE into a series of ODEs. In general,
ODEs are much simpler to solve than PDEs, this simplification is the essence
of spectral methods.

In general, we would have to solve this ODE numerically, but in this case
we can solve it analytically. Doing this we obtain

ûn(t) = û0ne
−(kn)2t

So we obtain the final solution

u(x, t) =

∞∑
n=−∞

(
û0ne

−(kn)2t
)
eiknx

4.2 General structure of a spectral solver

The simple example of the heat equation gives us a general idea of how to
use spectral methods. Suppose we are solving for a function u that satisfies
u(x, t = 0) = u0(x) and u = f where A is some function of u and its
derivatives. Typically an algorithm will follow the following steps.

1. Fill the values of u in physical space using the initial conditions.

2. Apply the Fourier transform to u to obtain its Fourier coefficients.

3. Perform some operations on the Fourier coefficients to calculate their
valeues at the next timestep.

4. Apply the inverse Fourier transform to obtain the values of the function
in physical space.

5. Go back to step 2 and repeat for the next timestep.

This is the most simple such algorithm. We may end up wishing to
compute some values before applying the Fourier transform or even move
back and forth between physical space and Fourier space multiple times.
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4.3 Burgher’s equation

Burgher’s equation is given by

ut + uux = νuxx

This is not as simple to solve as the heat equation, since simply writing the
Fourier expansion of u does not give us an easy expression for uux - if you
don’t belive me, try to find the Fourier expansion for this term.

Instead, we can use the Fourier expansion for this term more directly.
The first thing to do is compute the value of ux. Observe that each Fourier
coefficient of ux is given by (ûx)n = iknûn. This gives us an easy way to
compute ux.

Once we have this, we can use the Fourier expansion for uux directly,
that is, instead of trying to multiply the Fourier expansions of u and ux,
just compute the Fourier expansion of uux.

Using this method, our PDE becomes

∞∑
n=−∞

(
û′n(t) + (ûux)n(t) + ν(kn)2ûn(t)

)
eiknx = 0

by the same reasoning as before, this is the same as having every Fourier
coefficient equal to 0, so for each n ∈ Z

û′n(t) + (ûux)n(t) + ν(kn)2ûn(t)

We cannot solve this analytically as we could before, so we must discretify
time. Lets divide our time domain into equally spaced points 0 = t0, t1, . . . , tN =
T , where the spacing is ∆t. We will write uj for our approximation of u(tj).
Now our ODE becomes

ûj+1
n − ûjn
∆t

+ (uux)
j
n + ν(kn)2ûj+1

n = 0

Rearranging for ûj+1
n we get our time evolution scheme for each Fourier

coefficient. Note that we use the uux term explicitely but the uxx term
implicitely.

4.4 A brief note on aliasing and de-aliasing

It is now an appropriate time to bring up the fact that the numerical solution
to Burgher’s equation you just did is actually wrong! Probbaly not by much
but defninitely a little. This is due to a mathematical phenomenon know
as aliasing, which arises when we don’t have enough gridpoints to represent
the functions we would like to.
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5 2-D problems

The important thing to note about moving to 2-D is that a function of 2
spacial variables u = u(x, y) may be written as

u(x, y) =
∞∑

n=−∞

∞∑
m=−∞

ûmne
ikxmx+ikyny

where kx = 2π/Lx and ky = 2π/Ly.
For notational convenience, we will often omit the mn subscript and

write û for ûmn, along with omitting the x and y subscripts for k. We infer
which k is being referred to by whether it is next to m or n. In many cases
these will be the same anyway.

I will add in the 2-D Burgher’s equation soon, but it is a simple enough
expansion onto what we already know that it can be treated as an exercise
for the reader.

6 Solving Navier-Stokes

Now that we have solved the 2-D Burgher equation, Navier-Stokes is not far
away. Notice that momentum balance of Navier-Stokes, given by

ut + uux + vuy = −px + gx + ν (uxx + uyy)

vt + uvx + vvy = −py + gy + ν (vxx + vyy)

is very similar to the 2-D Burgher equation. Only with the added pressure
gradient and force terms. Timestepping forward with these equations is very
similar to what we have already done.

If we only cared about momentum balance and had no pressure gradient,
our time-stepping scheme would be

ûj+1 − ûj

∆t
+ ûux

j + v̂uy
j = ikmĝj − ν(k2m + k2n)û

j+1

v̂j+1 − v̂j

∆t
+ ûvx

j + v̂vy
j = ikng

j − ν(k2m + k2n)v̂
j+1

However, we cannot guarantee using only this that incompressibility is sat-
ified. This is where the role of the pressure comes in.

6.1 The Projection Method

Instead of the timestepping scheme above, lets do the same update method,
but instead instead of uj+1 and vj+1, we have the variables ū and v̄. The
method we use to ensure that the resulting field is incompressible is known
as the projection method. The idea is to project ū onto a divergence free
field. The method relies on the following result
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Theorem 6.1. (Helmholtz Decomposition) Let ū = (ū, v̄) (or (ū, v̄, w̄)) be
a field defined on a simply connected domain. Then u may be uniquely
decomposed into a divergence-free part and a vorticity-free part. In other
words

ū = u+∇ϕ

where ∇ · u = 0 and ϕ is a scalar field.

This fact allows us to enforce incompressibility in a simple manner. We
can find the field ϕ in the following way.

Enforcing incompressibility on our new field

0 = ∇ · u = ∇ · (ū−∇ϕ)

= ∇ · ū−∇2ϕ

=

∞∑
n=−∞

(
ikn̂̄unm + ikm̂̄vnm +

(
k2n + k2m

)
ϕnm

)
ei(knx+kmy)

so each Fourier coefficient of ϕ satisfies

iknū+ ikmv̄ +
(
k2n + k2m

)
ϕ = 0

Once we have found ϕ, we may simply take its gradient away from ū to
obtain our divergence free field u.

7 Details on implementation

This guide is intended to be as general as possible, so most language spe-
cific implementation details will be neglected. It is recommended that the
reader uses an external FFT (Fast Fourier Transform) library rather than
attempting to make their own. Examples of these include FFTW if C or
C++ is being used, or the FFT functionality of Numpy if Python is the
reader’s language of choice. I haven’t used the FFT in Numpy, so I can only
give information about FFTW in C.

7.1 Notes on FFTW

The documentation of FFTW is reasonably good, but there are a couple of
things worth noting. Firstly, it stores the Fourier coefficients in a slightly
weird way. Suppose we are doing a 1-D Fourier transform using c2c.

If we have N+1 Fourier coefficients for some even N, we would expect
for them to be stored in this way:

[u−N/2, u−N/2+1, . . . , uN/2]

But instead, FFTW stores them like this:

[u0, u1, . . . , uN/2, u−N/2, . . . , u−1]
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This isnt a problem if you use r2c in 1-D (which you should be for
everything in this resource), since it makes use of Hermitian symmetry of
the coefficients, so it stores 1-D coefficients in the following way

[u0, u1, . . . , uN/2]

But using r2c in 2-D does lead to these same complications. In general,
if your code doesn’t work and you don’t know why, check that you are
accessing the correct Fourier coefficients.

8 Further Reading
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