
Stochastic Dynamics in Thin Fluid Films

by

Thomas Stopford

MA4K9 Dissertation

Submitted to The University of Warwick

Mathematics Institute

April, 2023



Contents

1 Introduction 1

2 Theory for Thin Fluid Films 3

2.1 Deterministic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Gradient Flow Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Application to the Linearised System . . . . . . . . . . . . . . . . . . 7

2.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical Methods for the Deterministic Thin Film Equation 11

3.1 Linear Thin Film Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Notes on Computational Efficiency . . . . . . . . . . . . . . . . . . . 13

3.1.3 Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Fourier Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Discrete Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Application to the Linearised System . . . . . . . . . . . . . . . . . . 15

3.3 Full Thin Film Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Fourier Pseudo-spectral . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Numerical Methods for the Stochastic Thin Film Equation 23

4.1 Linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Fourier Spectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Nonlinear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Fourier Pseudo-spectral . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Capillary Wave Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Ruptures in Thin Fluid Films 30

5.1 Rare Event Theory for Ruptures in Thin Films . . . . . . . . . . . . . . . . 30

5.2 Markov Chain Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Estimating Rupture Times . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Finding the Markov Projection . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 Simple SDE Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 39

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ii



A Interpretation of Derivatives of Spatially Uncorrelated Variables 44

B Efficacy of Methods for Capturing the Full Spectrum Evolution 45

iii



iv



1 Introduction

The publication of the famous Reynolds equation [1], a tool used to find the pressure

distribution in a thin fluid film between two bearings, is thought by many to be the origin

of lubrication theory. The field has found applications across a vast range of scientific

domains and length scales, relevant to the modelling of microfluidics [11], flows in the

anterior chamber of the eye [3], and marine ice sheets [22]. Reynolds’ approach was to

reduce the Navier-Stokes equations into a much simpler set of governing equations by

exploiting the dispartity between characteristic lengthscales in orthogonal directions. His

simplified equations still capture the essential characteristics of the full Navier-Stokes

equations at these length scales, but allow the boundary value problem to be reduced to

a single PDE determining the pressure field.

Lubrication theory exploits this approach to model free surface flows; in particular the

dynamics of a thin liquid film between a solid and a gas. Unlike the work of Reynolds,

where the height of the fluid is prescribed to calculate the pressure, here the fluid surface

is treated as a free boundary and the pressure conditions at the surface are prescribed. An

evolution equation for the surface profile may be derived from the same simplified govern-

ing equations used by Reynolds. Much work has been done to study these deterministic

evolution equations both theoretically and numerically, and mechanisms for instability

and rupture of these films are of particular interest.

Disjoining pressure has been explored as a key mechanism for rupture in thin liquid

films [24]. However, at the nanoscale, the effects of thermal fluctuations become increas-

ingly relevant. These fluctuations can contribute to instabilities such as the development

of capillary waves on the surface of the film [19] and even rupture of the film [15]. Mod-

elling the effects of fluctuations on the film is the primary focus of this report. Their

involvement motivates the use of stochastic PDEs (SPDEs). The field of fluctuating hy-

drodynamics was first conceived with the creation of the Landau-Lifschitz Navier-Stokes

equations [18], where a noise term was added to the stress tensor of the fluid for the purpose

of modelling turbulence. Grun et al. [13] used formal arguments to derive a corresponding

stochastic thin film equation. Since then, work has been done to establish a more rigorous

mathematical basis to the thin film equation with the introduction of spatially correlated

noise [8].

Theoretical analysis has shown that the stochastic thin film equation captures much of the

phenomena that are observed experimentally, e.g. the development of thermal capillary

waves at the surface which can be seen after a linear stability analysis [19]. However,

as with the deterministic equation, the strong non-linearity of the system makes such

theoretical investigations of the full system difficult. Because of this, numerical investi-

gations become a useful tool in analysing these phenomena, and to verify the established

theoretical findings.
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In this work, we will first introduce the general theory of thin liquid films in Sec. (2). We

derive the deterministic evolution equation for the height profile of the film, and briefly

investigate its dynamics through linearisation. We then introduce the stochastic thin film

equation and perform a similar linear stability analysis.

In Sec. (3), numerical schemes are constructed to solve the deterministic thin film equation.

These will use the finite difference method and the Fourier pseudo-spectral method. We

show that these schemes converge to known analytical solutions to the linearised system

under temporal and spatial grid refinement.

These schemes will be developed to solve the stochastic thin film equation in Sec. (4) and

verified by comparison to the theoretical result for the evolution of capillary waves derived

in Sec. (2.2.1).

Finally, we conduct a brief investigation into ruptures in thin liquid films caused by ther-

mal fluctuations in Sec. (5). We outline analytical results for the rupture profile and

expected time of rupture [15]. Attempts are then made to use our numerical schemes to

verify these theoretical results. Initially we use a Monte-Carlo approach, but this becomes

computationally infeasible as the noise strength is decreased to zero, which motivates the

use of importance splitting [2] and Markov chain approximation [10] to make estimates

for properties of these rare events.
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2 Theory for Thin Fluid Films

In this section we will introduce the relevant theory for free surface flows. To begin, we

derive a thin film equation for a surface tension driven flow in the deterministic setting.

We then go on to discuss the stochastic thin film equation and perform a linear stability

analysis to derive the evolution of the spectrum of the stochastic thin film equation.

2.1 Deterministic Dynamics

In order to explore the dynamics of a thin film of fluid between a flat solid and vapour,

we will consider only two spatial dimensions, x parallel to the solid and y perpendicular

to the solid, where y = 0 refers to the fluid-solid interface, and y = h(x, t) refers to the

the fluid-vapour interface. We begin with a fluid flow problem, the goal being to obtain

a single evolution equation for the height, h, of the film. The derivation that follows is

heavily based on the derivation in [7, p. 1137-1141].

The fluid flow is governed by the incompressible Navier-Stokes equations. These are given

by

∇ · u = 0, (1)

ρ [∂tu+ u · ∇u] = −∇p+ µ∇2u, (2)

where u = (u, v) and p are the Eulerian velocity and pressure fields of the fluid respectively,

with ρ and µ denoting its density and viscosity. Note that the influence of gravity is

considered negligible. This is because surface forces dominate volumetric forces at small

scales.

We non-dimensionalise Eq. (1) and Eq. (2) with the hope of simplifying them through

asymptotic analysis. First, we introduce characteristic vertical and horizontal length scales

H and L so that y = Hỹ and x = Lx̃ for dimensionless variables x̃ and ỹ. We group terms

by factors of ε = H
L and apply the long wave approximation, ε << 1, to neglect terms of

O(ε2) or higher. We choose characteristic horizontal velocity scale U , time scale T = L
U ,

and pressure scale P = µUL
H2 , along with dimensionless variables ũ, ṽ, p̃ and t̃ so that

u = Uũ, v = UH
L , t = T t̃, and p = P p̃.

Under these charactersitic scales Eq. (1) and Eq. (2) become

∂x̃ũ+ ∂ỹṽ = 0, (3)

Reε2 [∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ] = −∂x̃p̃+ ε2∂2x̃ũ+ ∂2ỹ ũ, (4)

ρUH

L
ε4 [∂t̃ṽ + ũ∂x̃ṽ + ṽ∂ỹṽ] = −∂ỹp̃+ ε4∂2x̃ṽ + ε2∂2ỹ ṽ. (5)

Neglecting terms grouped by factors of ε2 or higher we obtain our simplified governing
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equations

∂xu+ ∂yv = 0, (6)

−∂xp+ µ∂2yu = 0, (7)

−∂yp = 0. (8)

At the interface between the film and the solid we assume no-slip and no-penetration

boundary conditions,

u = 0 and v = 0 at y = 0. (9)

On the fluid-vapour interface we have the dynamic boundary condition, obtained by bal-

ancing forces due to surface tension and pressure,

T · n̂ = γκn̂ at y = h(x, t). (10)

Where n̂ is the outward unit normal to the boundary given by n̂⊺ = 1√
1+(∂xh)2

(−∂xh, 1),
T is the stress tensor of the fluid given by Tij = µ [∂iuj + ∂jui] − pδij , γ is the surface

tension coefficient of the fluid, and κ = ∇ · n̂ is the curvature of the surface. Equating the

normal components of the dynamic boundary condition, we see that n̂ ·T · n̂ = n̂ · γκn̂ =

γκ. Ignoring terms that are O(ε2) or smaller, we see that this reduces to our boundary

condition for the pressure at the film surface

−p = γ∂2xh at y = h(x, t). (11)

Taking the tangential components, we see that t̂ · T · n̂ = 0, where t̂ is the unit tangent

to the film surface, we obtain a boundary condition for ∂yu at the film surface

∂yu = 0 at y = h(x, t). (12)

Additionally, enforcing mass conservation, we obtain that

∂th = −∂xϕ, (13)

where ϕ is the flux given by ϕ(x, t) =
∫ h(x,t)
0 u(x, ỹ, t)dỹ.

By Eq. (8), the pressure has no y dependence. This allows us to rearrange and integrate

Eq. (7) from h to y and apply boundary condition Eq. (12) to obtain 1
µ(y − h)∂xp = ∂yu.

This may be integrated again from 0 to y, and applying the no slip condition, Eq. (9), we

get
1

µ

[
y2

2
− hy

]
∂xp = u,
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and applying our mass conservation condition, Eq. (13), we obtain

∂th = ∂x

∫ h

0

1

µ

[
y2

2
− yh

]
∂xp (14)

=
1

3µ
∂x
(
h3∂xp

)
. (15)

(16)

Applying Eq. (11), we obtain the thin film equation

∂th = − γ

3µ
∂x
(
h3∂3xh

)
. (17)

We can choose characteristic length scale H, and time scale 3Hµ
γ to obtain a dimensionless

form of the equation

∂t̃h̃ = −∂x̃
(
h̃3∂3x̃h̃

)
. (18)

This is the deterministic evolution equation we will be solving numerically in later sections.

For brevity, we will often drop the ‘˜’ notation.

2.1.1 Gradient Flow Form

We may write the thin film equation in gradient flow form [7, p. 1141] as

∂th = −∂x
(
M(h)∂x

(
δH
δh

(h)

))
. (19)

With mobility M and free energy H defined by

M(h) = h3, (20)

H(h) =

∫
Ω

1

2
(∂xh)

2 dx. (21)

In particular, this is a Wasserstein gradient flow [21]. This means that at all times the

direction of ∂th is the direction of maximal descent of H at h subject to mass conservation

as in Eq. (13).

Note that from the perspective of fluid mechanics, the dimensional free energy per unit

length of a film with height profile h is given by the product of the surface tension and

change in area per unit length of the perturbation. This is given by

F (h) = γ

∫
Ω

(√
1 + (∂xh)2 − 1

)
dx = γ

∫
Ω

1

2
(∂xh)

2 dx+O(ε2). (22)

From this perspective we see that the thin film equation is simply a gradient descent on

the free energy of the film.
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2.1.2 Linearisation

Linearising Eq. (18) by writing h = 1 + δh where δh≪ 1 is a perturbation we obtain

∂t(1 + δh) = ∂x
(
(1 + δh)3∂3x(1 + δh)

)
, (23)

so that

∂tδh = ∂4x(δh) +O(|δh|2). (24)

Removing the higher order terms we obtain the linearised thin film equation

∂tδh = −∂4xδh. (25)

We intend to find an analytical result for the evolution of the spectrum of δh. Before

doing this we give a brief background on Fourier series and the Fourier transform.

2.1.3 Fourier Series

Here we give a summary of the essential facts about Fourier series given in [23, Chapter. 2].

Given a field K = R or C, we will let L2([0, L],K) =
{
f : [0, L] → K|

∫ L
0

∣∣f |2dx <∞
}

be

the Hilbert space of square integrable functions. If the field K is not specified we take

K = R. We equip this space with the standard L2 inner product

⟨f, g⟩ = 1

L

∫ L

0
fgdx, (26)

where g denotes the complex conjugate of g. We define the trigonometric basis of L2([0, L],C)
to be the set

{
1√
L
En : n ∈ Z

}
where En(x) = eiknx with k = 2π

L . This forms an orthonor-

mal basis of L2([0, L],C), while the set
{

1√
L
E0

}
∪
{

1
2
√
L
(En + E−n) : n ∈ N

}
forms an

orthonormal basis of L2([0, L],R).

By orthonormality, given a function u ∈ L2([0, L],K), we may write u as the series

u =
1

L

∞∑
n=−∞

⟨u,En⟩En. (27)

We will define ⟨u,En⟩ to be the nth Fourier coefficient of u and we will denote it as

ûn = 1
L ⟨u,En⟩ = 1

L

∫ L
0 u(x)e−inkxdx.

We also note the following useful identities. Given α ∈ N, and f ∈ Cα([0, L]) we may
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apply integration by parts α times to obtain

∂̂αfn =
1

L

∫ L

0
∂αfe−iknxdx (28)

= (−1)α
1

L

∫ L

0
(−ikn)αfe−iknxdx (29)

= (ikn)αf̂n. (30)

2.1.4 The Fourier Transform

Given f ∈ L2(R,K), we may define the Fourier transform of f , F(f) by

F(f)(ξ) =

∫ ∞

−∞
f(x)eiξxdx. (31)

Given α ∈ N, if f ∈ Cα(R,K) ∩ L2(R,K) we have the derivative formula

F(∂αx f)(ξ) = (iξ)αF(f)(ξ). (32)

Here here we have used integration by parts and the fact that such a function must decay

to 0 as |x| → ∞. For convenience, we will use f̂ to denote the Fourier transform of f . We

will often refer to f̂ as the spectrum of f .

It is also worth noting that if the support of f lies in [0, L], then we may interpret f as

an L2([0, 1]) function, whose Fourier coefficients are given by

f̂n =
1

L

∫ L

0
f(x)e−iknxdx =

1

L

∫ ∞

−∞
f(x)e−iknxdx =

1

L
f̂(kn). (33)

2.1.5 Application to the Linearised System

Now that we have outlined the necessary results relating to Fourier series, we are ready

to derive the spectrum of δh. Assume that h ∈ C4,1(R× [0,∞)) so that the derivatives in

Eq. (25) make sense, and that for each t ≥ 0, h(·, t) ∈ L2(R). Now we may apply Eq.(32)

to Eq. (25) to obtain the evolution of the spectrum of δh,

∂tδ̂h(ξ, t) = −(iξ)4δ̂h(ξ, t). (34)

Note that here we have used the fact that ∂t and F commute. This is a trivial ODE with

solution

δ̂h(ξ, t) = e−(iξ)4tδ̂h(ξ, t). (35)

If we enforce that h and its spatial derivatives up to order 4 are periodic on [0, L] and

consider h only on this domain, then we may apply Eq. (33) to obtain the evolution of it’s

7



Fourier coefficients

δ̂hn(t) = e−(ikn)4tδ̂hn(0). (36)

We may apply this to obtain a simple analytical solution for the initial conditions h(x, 0) =

1 + α cos(kx). This has the form

h(x, t) = 1 + α cos(kx)e−k
4t. (37)

This analytical solution will be used to test our numerical methods in Sec. (3).

2.2 Noise Model

In order to incorporate the effect of thermal fluctuations into our model, an analogous

stochastic thin film equation may be derived as before, except it instead begins with the

incompressible Landau-Lifschitz Navier-Stokes equations [18], given as follows

∇ · u = 0, (38)

ρ [∂tu+ u · ∇u] = −∇p+ µ∇2u+∇ · S. (39)

Here S is the noise tensor representing the effect of thermal fluctuations. The compo-

nents Sij of S are Gaussian processes with mean E [Sij(x, t)] = 0 and auto-correlation

E [Sij(x, t)Slm(x′, t′)] = 2µKBTδijδlmδ(x− x′)δ(t− t′), where KB is the Boltzmann con-

stant and T is the temperature of the fluid. Note that we use E[X] to denote the expected

value of a random variable X.

Since S is a spatially uncorrelated random variable, it is natural to ask what the mathe-

matical meaning of its divergence is. Rigorously, white noise terms in stochastic PDEs are

considered as measures on Rk (k = 1, 2, 3) [5, p. 267], with stochastic differential equations

being interpreted as integral equations. Since the focus of this work is in numerical solu-

tions to stochastic PDEs, it is sufficient to only make sense of noise terms in the discrete

setting, this is discussed in Sec. (4).

Treating the noise terms formally and applying a similar strategy to that used in Sec.(2.1),

Grun et al. [13] found the analogous evolution equation for the film profile under the

influence of noise,

∂th =
1

µ
∂x

[
h3

3
∂xp+

∫ h

0
(h− y)Sxy(y)dy

]
,

where p = −γ ∂2h
∂x2

. When applying the long wave approximation to Eq. (39), it was

assumed that the components of S scale in the same way as the corresponding components

in the deterministic stress tensorT. This stochastic PDE still involves integrating the noise

over y, and so seeking a solution to it is impractical. In the same work, it was shown that

the following much simpler stochastic PDE is identical to that given above in the sense

that the time evolution of their distribution functions is equal. This stochastic PDE, which

8



we will refer to as the stochastic thin film equation (STFE) is given as follows,

∂th =
1

µ
∂x

[
h3

3
∂xp+

√
2KBTh3

3
N

]
. (40)

Here N is a Gaussian process with mean E [N (x, t)] = 0 and auto-correlation

E [N (x, t)N (x′, t′)] = δ(x− x′)δ(t− t′). Non-dimensionalising with respect to equilibrium

film height H, choosing time scale 3µH
γ and length scale H, we obtain the dimensionless

form of the stochastic thin film equation,

∂th = ∂x

[
−h3∂3xh+

√
2ψh3N

]
, (41)

where ψ = 2KBT
γH is a dimensionless constant. Analogously to the deterministic system, [8]

shows that we may recast this into gradient flow form

∂th = −∂x
(
M(h)∂x

(
δH
δh

)
+
√

2ψM(h)N
)
. (42)

The details of the specific choice of the noise term are beyond the scope of this report,

but are discussed in [21] and [8]. We only remark that this is a conservative stochastic

gradient flow. This means that the evolution consists of a gradient flow as discussed in

Sec. (2.1.1), and that the noise term is a conservative field.

2.2.1 Linearisation

It can be shown that the stochastic thin film equation captures the evolution of capillary

waves on the surface of a fluid due to thermal fluctuations. The derived result has been

shown already in [19] by computing the shock response of the system after linearisation.

We provide an alternative derivation making use of known results in stochastic PDEs.

To begin, we linearise Eq. (41). Setting h = 1 + δh yields the linearised form of the

stochastic thin film equation

∂tδh = −∂4xδh+
√
2ψ∂xN . (43)

We would like to derive an analogous result to Eq. (36) for the evolution of the spectrum

of δh. We must assume that the support of h(·, t) lies within [0, L] for each t and treat

h(·, t) as a periodic L2([0, L]) function. Note that with the addition of noise, we cannot

guarantee the regularity assumptions in Eq. (32). But we will apply the result formally

to obtain

∂tδ̂hn = −(ikn)4δ̂hn +
√
2ψiknN̂n, (44)

9



where N̂n(t) is a Gaussian process with mean and correlation

E
[
N̂n(t)

]
=

1

L

∫ L

0
E[N (x, t)]e−iknxdx = 0, (45)

E
[
N̂n(t)N̂n(t′)

]
=

1

L2

∫ L

0

∫ L

0
E[N (x, t)N (x′, t′)]eikn(x−x

′)dxdx′ (46)

=
δ(t− t′)

L
. (47)

We would like to analyse the long term behaviour of the spectrum of δh. To do this it

helps to write this equation in stochastic ODE form,

d
(
δ̂hn

)
=
(
−(ikn)4δ̂hn

)
dt+

(√
2ψ

L
ikn

)
dWn, (48)

where Wn is a one dimensional Wiener process. This is a form of the Ornstein-Uhlenbeck

process [12] with known analytical solution

δ̂hn(t) = e−(ikn)4t

(
δ̂hn(0) +

√
2ψ

L

∫ t

0
e−(ikn)4sdWn

)
. (49)

From this we see that δ̂hn is a Gaussian process with mean and autocorrelation given by

E
[
δ̂hn(t)

]
= e−(ikn)4tδ̂hn(0), (50)

E
[
δ̂hn(t)δ̂hn(t′)

]
= e−(ikn)4(t−t′)

[
δ̂hn(0)

2 +
2ψ(ikn)2

L

∫ min(t,t′)

0
e−2(ikn)4sds

]
. (51)

In particular, for an initially uniform film (δ̂hn(0) = 0), we have

E

[∣∣∣δ̂hn(t)∣∣∣2] = ψL

4π2n2

[
1− e−2(kn)4t

]
. (52)

Applying Eq. (33) we obtain the evolution of the spectrum of δh. Defining δ̂hrms(ξ, t) =√
E

[∣∣∣δ̂h(ξ, t)∣∣∣2], we should expect this to evolve as

δ̂hrms(ξ, t) =

√
ψL

ξ2
[
1− e−2ξ4t

]
. (53)

This result will be used to verify our numerical methods for solving both the full and

linearised stochastic thin film equations in Sec. (4).
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3 Numerical Methods for the Deterministic Thin Film

Equation

In the first instance, we will formulate the problem of solving the linearised thin film

equation, Eq. (25), with periodic boundary conditions. Then schemes will be derived

to solve it numerically, using the finite difference method and then the Fourier spectral

method. To follow we apply similar techniques to find numerical solutions to the full

thin film equation, Eq. (17), this time using the finite difference method and the pseudo-

spectral method. The efficacy of each method for the linear and full system will then be

discussed.

Both the full thin film equation and its linearised form are fourth order PDEs, so implicit

time integration is used improve the stability of the methods for larger timestep sizes.

This is simple for the linearised thin film equation since the problem reduces to solving a

system of linear equations in each time step. In the full thin film equation the system of

equations is nonlinear and so must be solved with the aid of root finding algorithms, in

our case the Newton-Kantorovich method [20]. We find that anti-aliasing is crucial when

solving nonlinear PDEs using fully implicit pseudo-spectral methods, since without it the

Newton-Kantorovich method fails to converge.

3.1 Linear Thin Film Equation

The linearised thin film equation will be solved on a finite interval Ω = [0, L] with periodic

boundary conditions. To allow our numerical schemes to be represented as compactly

as possible, and for consistency in notation between the linearised and full system, we

define the linear flux operator ϕ(h) = −∂3xh and the linear spatial derivative operator

L(h) = ∂4xh = ∂xϕ(h). So that we may write Eq. (25) in the form

∂th = L(h). (54)

The problem will be solved on temporal domain I = [0,∞). Now that we have defined

the necessary terms, the initial value problem we wish to solve is to find h ∈ C∞(Ω × I)

such that 
∂th(x, t) = L(h)(x, t) for all (x, t) ∈ Ω× I,

h(x, 0) = f(x) for all x ∈ Ω,

∂αxh(0, t) = ∂αxh(L, t) for all α ∈ {0, . . . , 4} , t ∈ I.

(55)

We will assume that the initial condition f is C∞(Ω) and is periodic on Ω in all of its

derivatives. With this exact formulation we may derive our numerical schemes.
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3.1.1 Finite Difference

For our finite difference method we discretise Ω to the uniform spatial grid Ω =

{xi = i∆x : i ∈ ΘN} with N gridpoints, where ΘN = {0, . . . , N − 1} is the set of grid

indexes, and ∆x = L
N is the grid spacing. We will be using a fixed timestep denoted by

∆t. Given j ∈ N, we denote the time j∆t with tj . For a function u : Ω× I → R, we will

denote its discrete counterpart with the sequence
(
u(j)

)∞
j=1

, where for each j, the vector

u(j) =
(
u
(j)
0 , . . . , u

(j)
N−1

)
∈ RN denotes the discrete approximation to h (·, tj).

We denote the discrete version of our spatial differential operator L and flux operator ϕ

with the discrete operators L and ϕ : RN → RN . To find a suitable approximations of

these we will approximate ∂3x ≈ D3,c
x , where D3,c

x is the third centred difference operator

given by (
D3,c
x v

)
i
=

−vi−2 + 2vi−1 − 2vi+1 + vi+2

2∆x3
, (56)

so that our discrete flux operator takes the form ϕ(h) = D3,c
x h. We approximate ∂x ≈ Dc

x,

where Dc
x : RN → RN is the first central difference operator defined by

(Dc
xv)i =

vi+1 − vi−1

2∆x
, (57)

so that our discrete spatial differential operator becomes

L(h) = Dc
xϕ(h). (58)

Note that the subscripts are all computed modulo N . For the time derivative we use the

Euler approximation ∂t ≈ h(j+1)−h(j)

∆t . Now our goal is to solve the discrete problem of

finding a sequence (h(j)) of vectors h(j) ∈ RN so that h(j+1)−h(j)

∆t = L(h(k)),

h(0) = f ,
(59)

where f is vector representing f sampled on the discrete grid Ω, and k ∈ {j, j + 1}
depending on if we choose to use implicit or explicit time integration. For its stability

properties, we will be using implicit time integration, so we take k = j + 1. This a is

system of linear equations which we may write in the form Ahj+1 = hj , where

A = I+∆tL. (60)

Note that L refers to the matrix form of our spatial differential operator. This may be

solved using simple row reduction algorithms. Expanding Eq. (58), we find that

(L(h))i = −hi−3 − 2hi−2 − hi−1 + 4hi − hi+1 − 2hi+2 + hi+3

4∆x4
, (61)
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so our matrix has the stencil 1
∆x4

[1,−2,−1, 4,−1,−2, 1].

3.1.2 Notes on Computational Efficiency

Solving a general linear system of N equations in N unknowns has time complexity O(N2)

using the standard row reduction algorithm. If the matrix A associated with the system

is banded, that is Aij = 0 whenever |i− j| > ℓ for some ℓ ∈ N>0, then solving the system

has complexity O(ℓN) instead.

Our matrix is almost banded, except due to our periodic boundary conditions there are

non-zero elements close to every corner. This may be fixed by applying a coordinate

transform to our gridpoints and operating on the transformed gridpoints instead. This

coordinate transform is given by

q(i) =

 2i if i < N
2 ,

2(N − i)− 1 if i ≥ N
2 .

We then instead solve the system Ãh̃j+1 = h̃j , where h̃q(i) = hi. The matrix Ã is banded

with 6 bands above and 6 bands below the diagonal. The new transformed system may

be solved more efficiently using banded row reduction algorithms.

3.1.3 Stability and Convergence

For the linear system we may show stability and convergence analytically. A Von Neumann

stability analysis [14, Chapter. 9] shows that the explicit method is stable on the condition

that ∆t
∆x4

< 1
6 , while the implicit method is unconditionally stable. This illustrates the

need for implicit time integration for this PDE. The size of timestep needed for stability

on very fine grids makes explicit methods computationally infeasible. In both methods,

a simple Taylor expansion shows that we should expect first order consistency in time

and second order consistency in space. This can be seen experimentally in figure (1).

For all of our convergence plots we will be using the discrete L∞ norm. That is, given

discrete spatial mesh ΩN , exact solution h̄ and approximate solution (hj)∞j=1, we define

the approximation error ε by

ε := sup
j

∥h̄(·, tj)− hj∥∞,N = sup
i,j

|h̄(xi, tj)− hji |. (62)

3.2 Fourier Spectral Methods

The Fourier spectral method is a popular technique used to solve PDEs. It is favourable

to the finite difference method in many cases due to its high order of convergence, and

often can be easier to implement.
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(a) (b)

Figure 1: Convergence of method (59) to analytical solution (37). (1a) Convergence in
space with ∆t = 1× 10−11. (1a) Convergence in time with ∆x ≈ 1× 10−3.

Before we derive the numerical method used for our specific problem, we will discuss the

conceptual basis of the Fourier spectral method. Recall the details about Fourier series and

the trigonometric basis of L2([0, L]) discussed, Sec. (2.1.3). We now address the discrete

counterpart to this, discrete Fourier transforms.

3.2.1 Discrete Fourier Transforms

As with Fourier transforms, the following information is a summary of that seen in [23,

Chapter. 2]. Let u be a C∞(Ω) function that is periodic in all of its derivatives, and let u

be its discrete counterpart on the uniform discrete spatial grid Ω. We define the discrete

Fourier transform operator FN : RN → CN by

FN (u)n = ûn, (63)

where ûn are the discrete Fourier coefficients of u given by

ûn =
1

L

N−1∑
j=0

uje
−iknxj∆x. (64)

We use the same notation for the discrete Fourier coefficients of u and the Fourier co-

efficients of u because they are equal for n ∈ {−N/2, . . . , N/2− 1}. Given a discretised

function u on a discrete grid with N grid points, we will denote its discrete Fourier trans-

14



form onto N Fourier coefficients by

û = FN (u) =
(
û−N/2, . . . , ûn/2−1

)
. (65)

And for convenience we denote the set of reciprocal index points as Θ̂N =

{−N/2, . . . ,N/2− 1}. The inverse discrete Fourier transform operator F−1
N : CN → RN

is defined by

F−1
N (û)j =

N/2−1∑
n=−N/2

ûne
iknxj . (66)

Note that F−1
N (FN (u)) = u for any u ∈ RN .

The application of discrete Fourier transforms to the Fourier spectral method is explained

most effectively by example. It will be applied to the linearised system in the following

section.

3.2.2 Application to the Linearised System

The application of the Fourier spectral method to the linearised system is very simple.

First recall the evolution formula we obtained for the evolution of the Fourier coefficients,

Eq. (34). We simply truncate the Fourier series to the terms whose index lies in Θ̂N and

write this compactly as

∂tĥ = (ik)4ĥ, (67)

where k is the frequency vector given by kn = kn for n ∈ Θ̂N . We interpret multiplication

of vectors as component-wise multiplication. Applying the initial condition h(x, 0) = f(x)

for each x ∈ [0, L] gives us our scheme in discrete space

ĥ(j)n = e−(ikn)4j∆tf̂n for n ∈ Θ̂N . (68)

Again we write this in the compact form

ĥ(j) = e(ik)
4j∆tf̂ , (69)

with eik
4j∆t again being a component-wise operation, i.e.

(
eik

4j∆t
)
n
= ei(nk)

4j∆t. At any

time tj , we can obtain our approximation h(j) with h(j) = F−1
N

(
ĥ(j)

)
. This solution has

no error in the case where f has only finitely many Fourier coefficients. The only cause

of spacial error is in the truncation of the Fourier series of f̂ . We see this in Figure (2)

where the spatial convergence is super-exponential.
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Figure 2: Convergence of method with number of Fourier nodes for the method given
by Eq. (69) applied to the initial value problem with u0(x) = 1 + e−100x2 on domain
Ω = [−1, 1].

.

3.3 Full Thin Film Equation

Setting Ω = [0, L] and I = [0,∞) as earlier, the full thin film equation problem is formu-

lated as follows. We seek h such that
∂th(x, t) = −∂x

(
h(x, t)3∂3xh(x, t)

)
for all (x, t) ∈ Ω× I,

h(x, 0) = f(x) for all x ∈ Ω,

∂αxh(0, t) = ∂αxh(1, t) for all α ∈ {0, . . . , 4} , t ∈ I.

(70)

Again, we will write our differential equation as ∂th = L(h), where

L(h) = ∂xϕ(h), (71)

with flux operator ϕ(h) = −h3∂3xh. When solving the full thin film equation, we discretise

to a set of non-linear equations which are solved using a root finding algorithm. This is

the same principle as that used in [25].

3.3.1 Finite Difference

Using the same notation as in Sec. (3.1.1), we will again set our discrete differential

operator to be

L(h) = Dc
xϕ(h). (72)
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Except this time the discrete flux operator ϕ takes the form

ϕi(h) = (hi)
3
(
D3,c
x h

)
i
. (73)

Our discrete problem has the same form as before. We are searching for a sequence(
h(j)

)
∈ RN such that 

h(j+1) − h(j)

∆t
= L

(
h(j+1)

)
, (74)

h0 = f , (75)

except this is now a nonlinear system due to L now being a nonlinear operator.

We solve this nonlinear system in the following way. Given h(j), define the residual function

R : RN → RN by

R(v) = v − h(j) −∆tL(v). (76)

Observe that if h(j+1) satisfies Eq. (74), then R
(
h(j+1)

)
= 0. So evolving our system

corresponds to finding a root of R. This is done using the Newton-Kantorovich method

[20]. We explain this briefly below.

Given an initial guess v0, iterate with vn+1 = vn −
(
DR−1(vn)

)
R(vn), where DR is the

Jacobean of R. If v0 is sufficiently close to a root v⋆ of R we should expect quadratic

convergence to the root in almost all cases. A good initial choice for v0 is the explicit step

v0 = h(j) +∆tL(h(j)).

The Jacobean of R in Eq. (76) is given by DR = I−∆t(DL), where

(DL(h))ij = ∂jLi(h) (77)

=
−∂jϕi−1(h) + ∂jϕi+1(h)

2∆x
, (78)

with

∂jϕi(h) =



−h3i /
[
2∆x3

]
if j = i− 2,

2h3i /
[
2∆x3

]
if j = i− 1,

3h2i [−hi−2 + 2hi−1 − 2hi+1 + hi+2] /[2∆x
3] if j = i,

−2h3i /
[
2∆x3

]
if j = i+ 1,

h3i /
[
2∆x3

]
if j = i+ 2,

0 otherwise.

(79)

Note again that all taken modulo N . Notice that DR is almost banded in the same sense

as described in Sec. (3.1.2). So we may use the coordinate transform mentioned earlier to

solve the system more efficiently.
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3.3.2 Stability and Convergence

A stability criterion for the explicit method on the nonlinear system is difficult to find

analytically, as are results for consistency. However we may find experimental convergence

results shown in Figure (3). As we would expect from the central difference approximation

for spatial derivatives and Euler time integration scheme, we see quadratic convergence in

space and linear convergence in time.

(a) (b)

Figure 3: Convergence of method (74) . (1a) Convergence in space with ∆t = 1 × 10−7

where εl gives convergence to (37) with α = 1 × 10−4 and εf giving convergence to the
computational solution on the finest grid with α = 1 × 10−1 and . (1a) Convergence in
time to (37) α = 1× 10−2 and with ∆x = 1× 10−3.

3.3.3 Fourier Pseudo-spectral

Applying the pseudo-spectral method to the full system is much more complex than with

the linear system. We begin by finding an expression for the evolution of the Fourier

coefficients of h. Applying Eq. (32) and Eq. (32) to the PDE in Eq. (70) we obtain

∂tĥn = iknϕ̂(h)n for each n ∈ Z. (80)

We would like to end up with a numerical scheme of the form Dtĥ = L
(
ĥ
)
, so the

problem becomes one of finding an expression for ϕ̂(h)n in terms of the Fourier coefficients

of h. Computationally we only ever use finitely many Fourier coefficients of h, so we

immediately make the approximation h ≈ hN =
∑N/2−1

n=−N/2 ĥnEn, i.e. approximating h as
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its truncated Fourier series. We begin by writing out the Fourier expansion of ϕ (hN ),

ϕ (hN ) (x) = −

 N/2−1∑
n=−N/2

ĥne
iknx

3 N/2−1∑
n=−N/2

(ikn)3ĥne
iknx

 (81)

= −
∑

a,b,c,d∈Θ̂N

ĥaĥbĥc(ikd)
3ĥde

ik(a+b+c+d)x. (82)

By orthogonality of the Fourier basis, we see that the Fourier coefficients of ϕ (hN ) have

the form

ϕ̂ (hN )n =
∑

(a,b,c,d)∈Λn

ĥaĥbĥc(ikd)
3ĥd, (83)

where Λn =
{
(a, b, c, d) ∈ (ΘN )

4 : a+ b+ c+ d = n
}
. However, computing this sum is

computationally undesirable since it is guaranteed to require O(N3) operations. Instead

of this approach, we opt to compute the product h3∂3xh in physical space and then take

its Fourier transform to obtain ϕ̂(h). This departure from doing all of our calculations in

Fourier space is known as the pseudo-spectral method [9].

To perform our calculation in physical space, we must choose a number of collocation

points to use, M . To maximise computational efficiency, we must choose the smallest

possible M such that our computed Fourier coefficients of ϕ(hN ) are equal to the true

values given by Eq. (83). Using M collocation points we will let xj = j∆x denote the x

coordinate of each collocation point where j ∈ ΘM and ∆x = L/M . Taking the discrete

Fourier transform of ϕ(hN ) with M collocation points gives

FM (ϕ(hN ))n = −
∑
j∈ΘM

ϕ(h)(xj)e
−iknxj∆x (84)

= −
∑
j∈ΘM

∑
a,b,c,d∈Θ̂N

ĥaĥbĥc(ikd)
3ĥde

ik(a+b+c+d)xje−iknxj∆x (85)

= −
∑

a,b,c,d∈Θ̂N

ĥaĥbĥc(ikd)
3ĥd

∑
j∈ΘM

eik(a+b+c+d−n)xj∆x. (86)

Note that that the expression

∑
j∈ΘM

eik(a+b+c+d−n)xj∆x =

L if (a+ b+ c+ d− n) ≡ 0 mod M,

0 otherwise.
(87)

So we can see that we avoid aliasing error for the nth Fourier coefficient when all elements

(a, b, c, d) ∈
(
Θ̂N

)4
satisfy |a + b + c + d − n| < M . Noting that a, b, c, d and n all take

values between −N/2 and N/2− 1, we deduce that there will be no aliasing error as long

as 5N/2 − 1 < M . This is an extension to the famous ‘3/2 rule’ [4, Chapter 3] [9]. It is

not hard to generalise this to a ‘(k + 1)/2 rule’ using an identical method.

19



This gives us an efficient method for computing ϕ̂(hN ) in terms of the Fourier coefficients

of hN . We will write this in a more compact form. Letting ĥ denote the vector of the

Fourier coefficients of hN whose index lies in Θ̂N , and ϕ̂ : CN → CN denote the discrete

reciprocal flux operator which takes the values ϕ̂
(
ĥ
)
n
= ϕ̂ (hN )n, we may write

ϕ̂
(
ĥ
)
= −F 5N

2

(
−F−1

5N
2

(
ĥ
)3

F−1
5N
2

(
k3ĥ

))
, (88)

where as usual we interpret multiplication of vectors as component-wise multiplication.

Note that the right hand side is a C
5N
2 vector while the left hand side is a CN vector. In

fact, we truncate the right hand side to the terms whose index lies in Θ̂N before assigning

it to the right hand side. We choose this implicit truncation over the use of a truncation

operator for simplicity only.

We now have the discrete problem of finding h(j) so that
ĥ(j+1)−ĥ(j)

∆t = L
(
ĥ(j+1)

)
,

ĥ(0) = f̂ ,
(89)

where

L
(
ĥ
)
= ikϕ̂

(
ĥ
)
. (90)

As before, we solve this using the Newton-Kantorovich method. We define the residual

function R(v) = v − ĥ(j) −∆tL(v). The Jacobean of R is given by

DR(v) = I−∆tDL(v), (91)

where DL(v) = ikDϕ̂(v). To find the Jacobean of ϕ̂ recall that

ϕ̂
(
ĥ
)
m

=
∑

(a,b,c,d)∈Λm

ĥaĥbĥc(ikd)
3ĥd. (92)

Finding the nth partial derivative of ϕ̂
(
ĥ
)
m

yields

(
Dϕ̂

(
ĥ
))

nm
= ∂nmϕ̂(ĥ) = (ikn)3

∑
(a,b,c)∈Γm−n

ĥaĥbĥc + 3
∑

(a,b,c)∈Γm−n

ĥaĥb(ikc)
3ĥc, (93)

where Γd =

{
(a, b, c) ∈

(
Θ̂N

)3
: a+ b+ c = d

}
. Computing each of these terms naively

takes O(N2) time for each coefficient. Instead of doing this, we may apply a similar
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method to that used to obtain Eq. (88) to see that

∑
(a,b,c)∈Γm−n

ĥaĥbĥc = F3N

(
F−1
3N

(
ĥ
)3)

m−n
, (94)

and that ∑
(a,b,c)∈Γm−n

ĥaĥb(ikc)
3ĥc = F3N

(
F−1
3N

(
ĥ
)2

F−1
3N

(
(ik)3ĥ

))
m−n

. (95)

These identities are useful because we may exploit the ‘Fast Fourier Transform’ to compute

them. Unfortunately the Jacobean of this residual function is a dense matrix, so we cannot

exploit the same coordinate transform as with the finite difference method. This means

that the time complexity of each step is O(N2) rather than O(N log(N)) as would be the

case in an explicit pseudo-spectral method.

3.3.4 Convergence

In Figure (4) we see that the error of the numerical scheme decreases exponentially with

the number of gridpoints used, and linearly with decreasing timestep size.

(a) (b)

Figure 4: Convergence of method (89) with (a) number of Fourier nodes applied to the
initial value problem with u0(x) = 1 + 7

10 cos(πx) on domain Ω = [−1, 1] and constant
∆t = 1 × 10−7. Convergence is measured experimentally against a solution using 256
Fourier nodes. (b) Convergence in timestep size to linearised solution in Eqn. (37).
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3.4 Summary

We have now implemented numerical methods to solve the linearised and full thin film

equations. The spectral method is clearly superior for solving the linearised thin film

equation. Our finite difference scheme for the linearised equation attains second order

convergence in space and first order convergence in time, while our spectral scheme is

essentially analytic, with no error beyond that arising from the truncation of the Fourier

series. Additionally, the spectral scheme is much easier to implement than the finite

difference scheme, the independence of each of the Fourier coefficients means that an

implicit or analytical scheme can be found by simple algebraic rearrangement or finding

the solution to a simple ODE. When using the finite difference method, the evolution

matrix A must be constructed, a process which is vulnerable to error, adding to the time

taken for implementation. We note that the time complexity of the finite difference scheme

is linear in the number of gridpoints used, while the time complexity of the spectral method

is only O(N log(N)). However, this is counteracted by the remarkable convergence rate

of the spectral scheme, which requires significantly fewer grid points for the same level of

accuracy.

In solving the full thin film equation, the pseudo-spectral method is only slightly superior

to the finite difference method. One could argue that the finite difference method is

more practical, since deriving expressions for its residual function and Jacobean, and then

implementing the code to solve the nonlinear system may be done with relative ease. The

implementation of the pseudo-spectral scheme is a much more involved process due to

the need for anit-aliasing and the fact that the Jacobean is inherently complicated. It

is also worth noting that if one wishes to use an interpreted language such as Python to

implement the pseudo-spectral scheme, the use of vectorised operations when filling our the

dense Jacobean matrix is crucial for performance. This is not such an issue for the finite

difference scheme since the Jacobean is sparse. The reason we conclude that the pseudo-

spectal method is better than the finite difference method is due to its exponential spatial

convergence, in comparison to only quadratic convergence of the finite difference method.

As with the linear case, this convergence rate leads to the pseudo-spectral method having

better performance overall. The quadratic computational complexity in the number of

gridpoints is compensated for by its rate of convergence.

Now that we have confidence in the efficacy of these methods for approximating solutions

to the deterministic thin film equation, we are ready to incorporate the effects of thermal

noise into our computational models. This will be done in the following section in which

we find computational solutions to the stochastic thin film equation.
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4 Numerical Methods for the Stochastic Thin Film Equa-

tion

The numerical schemes derived in Sec. (3) to solve the deterministic thin film equation will

now be adapted to solve the stochastic thin film equation. In the linear case, the noise is

additive, so adding the noise before our implicit step turns out to be sufficient. Although

when using the Fourier spectral method, a better scheme that exploits the analytical

solution Eq. (52) may be used as well.

In the full STFE, the noise is multiplicative. When using the finite difference method,

this may be treated implicitly by incorporating the noise into the residual function. For

the Fourier spectral method, the aliasing error caused by the fractional power of h is more

difficult to remedy than that for quartic non-linearities seen in the deterministic equation.

For this reason, the noise term is treated explicitly instead.

4.1 Linear system

We will solve the linear system using finite difference and Fourier spectral methods. The

stochastic PDE problem is given as follows. We wish to find h such that
∂th(x, t) = L(h)(x, t) +

√
2ψσ(N )(x, t) for all (x, t) ∈ Ω× I,

h(x, 0) = f(x) for all x ∈ Ω,

∂αxh(0, t) = ∂αxh(1, t) for all α ∈ {0, . . . , 4} , t ∈ I,

(96)

where L is as defined in Eq. (55) and σ is the linear noise operator defined by σ(N )(x, t) =

∂xN (x, t).

The noise may be treated either explicitly, by simply adding it after the implicit integration

step, or implicitly, by adding it before the implicit integration. Since the noise is additive,

this choice does not effect the convergence or stability properties of the method, and both

should be equivalent in the limit ∆t→ 0. In this section we will explore methods that use

each of these approaches.

4.1.1 Finite Difference

Before we outline the finite difference scheme we will address the discretisation of the

noise term, N . On the uniform mesh Ω, we approximate the Dirac-delta function with

the scaled Kronecker delta, that is δ(xi−xj) ≈ 1
∆xδij . Similarly, in the discrete time grid,

we use the approximation δ(tm − tn) ≈ 1
∆tδmn. So at time tj , we approximate the noise
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term N (·, tj) with the Gaussian vector N(j) ∈ RN with mean and auto-correlation

E
[
N

(j)
i

]
= 0, (97)

E
[
N

(j)
i N

(j′)
i′

]
=

1

∆x∆t
δii′δjj′ , (98)

for each i, i′, j, j′ ∈ ΘN .

To approximate the noise operator, σ, we use a central difference to approximate the

spatial derivative. This gives us the discrete noise operator, σ : RN → RN defined by

σ(N) = Dc
xN. Writing out our system with these finite difference operators gives us the

discrete problem, to find a sequence
(
h(j)

)∞
j=1

such that h(j+1)−h(j)

∆t = L(h(j)) +
√
2ψσ(N(j)),

h(0) = f ,
(99)

where L is defined as in Eq. (58).

This reduces to the linear system of equations given by

Ah(j+1) = h(j) +∆t
√

2ψσ(N(j)), (100)

with A defined as in Eq. (60). As before, this system may be solved using row reduction.

4.1.2 Fourier Spectral

Recall that in the deterministic case, the Fourier spectral method was tantamount to

evolving the system of ODEs given by Eq. (34) and applying Eq. (33). The analogous

procedure in the stochastic setting is to evolve the system of ODEs in Eq. (44). We may

discretise this system of ODEs as follows, ĥ(j+1)−ĥ(j)

∆t = −(ik)4ĥ
(j+1)
n + ik

√
2ψN̂(j),

ĥ
(0)
n = f̂ .

(101)

Here N̂ denotes the discrete Fourier transform of the noise vector, FN (N).

One might presume it is better to make use of the analytical solution to the deterministic

system, Eq. (36). Using an operator splitting approach, we can solve the deterministic

part of the evolution analytically and add the noise explicitly at the end. This would give

us the scheme 
ĥ(j+ 1

2
) = e−(ik)4∆tĥ(j),

ĥ(j+1) = ĥ(j+1/2) + ik∆t
√
2ψN̂(j),

ĥ
(0)
n = f̂ .

(102)
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However, as will be discussed in Sec. (4.3) the efficacy with which this method captures

the spectrum is no better than our first Fourier method, Eq. (101). This is because the

analytical integration step fails to capture the effects of the noise between times t and

t + ∆t. The most efficacious method exploits the exact solution to the linearised STFE

in Eq. (50) and Eq. (51). If we know the value of δ̂h(t), then the value of δ̂h(t+∆t) is a

random variable with mean e−(ikn)4tδ̂h(t) and variance ψ
(ikn)2

[
e−2(ikn)4∆t − 1

]
. Explicitly

we write our method as ĥ(j+1) = e−(ik)4∆tĥ(j) +
√

ψ
(ik)2

(
1− e−2(ik)4∆t

)
N(j),

ĥ(0) = f̂ ,
(103)

where in this case, N is a Gaussian vector with mean 0 and correlation E
[
N

(j)
n N

(j′)
n′

]
=

δii′δjj′
∆x . Here, all of the operations such as raising to powers, exponentiation and taking

the square root are taken to be component-wise operations. This method is used in [15]

to explore ruptures in thin films governed by a constant mobility thin film equation.

4.2 Nonlinear System

We formulate the full stochastic thin film problem as
∂th(x, t) = L(h)(x, t) +

√
2ψσ(h,N )(x, t) for all (x, t) ∈ Ω× I,

h(x, 0) = h0(x) for all x ∈ Ω,

∂αxh(0, t) = ∂αxh(1, t) for all α ∈ {0, . . . , 4} , t ∈ I,

(104)

where σ is our noise operator defined by σ(h,N )(x, t) = ∂x

(
h(x, t)

3
2N (x, t)

)
, and L is

defined in Eq. (71).

4.2.1 Finite Difference

The following method is a special case of the adaptive grid scheme developed in [25]. As

in the deterministic case, we will only be using a uniform spatial grid.

We approximate our noise operator with the discrete noise operator σ defined by

σ(h,N) = Dc
xF(h,N), (105)

where (F(h,N))i = h
3
2
i Ni. Discretising we get the following nonlinear system of equations h(j+1)−h(j)

∆t = L(h(j+1)) +
√
2ψσ

(
h(j+1),N(j+1)

)
,

h(0) = f ,
(106)

where L is defined in Eq. (72). We intend to use the Newton-Kantorovich method to
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find an appropriate h(j+1) given h(j). To do this we require a residual function and its

Jacobean. For this system, the residual function is given by

R(v) = v − ĥ(j) −∆t
(
L(v) +

√
2ψσ

(
v,N(j+1)

))
. (107)

The Jacobean of this residual function is given by DR = I−∆t
(
DL+

√
2ψDσ

)
, where

L is given in Eq. (77).

Note that the Jacobean Dσ refers only to the Jacobean with respect to h. This is given

by

∂jσi(h, n̂) =


−3h

1
2
j Nj/[4∆x] if j = i− 1,

3h
1
2
j Nj/[4∆x] if j = i+ 1,

0 otherwise.

(108)

4.2.2 Fourier Pseudo-spectral

If we wish to apply the Fourier pseudo-spectral method to the problem in Eq. (104) we

encounter an additional difficulty. Due to the h
3
2 term, we will always encounter aliasing

error. To the author’s knowledge, there is no efficient method for anti-aliasing when

raising to non-integer powers. This also means that solving the PDE fully implicitly is

more difficult, since writing down the Jacobean of our residual function becomes a lot

more difficult when we cannot easily find the exact expressions for the Fourier coefficients

of h
3
2 . Instead of doing this we invoke operator splitting. We solve the deterministic part

of the equation implicitly, and add the noise explicitly at the end. Our discrete noise

operator, σ takes the form

σ
(
ĥ, N̂

)
= ikF 5N

2

(
F−1

5N
2

(
ĥ
) 3

2 F−1
5N
2

(
N̂
))

. (109)

Note that the choice to use 5N
2 collocation points in physical space is somewhat arbitrary.

It is chosen to be the largest possible number of collocation points that does not exceed

the amount used in the implicit time integration step. This gives us the scheme
ĥ(j+1/2)−ĥ(j)

∆t = L
(
ĥ(j+1/2)

)
,

ĥ(j+1) = ĥ(j+1/2) +
√
2ψ∆tσ

(
ĥ, N̂

)
,

ĥ0 = f ,

(110)

where L is defined as in Eq. (90).

4.3 Capillary Wave Evolution

To test our numerical methods we compare the Fourier transform of their numerical solu-

tion to Eq. (53). For numerical solutions to the linear system we expect this to be followed
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exactly for all noise levels, while in solutions to the nonlinear system we only expect the

spectrum to evolve in this way while the perturbation size from the initial conditions is

small. For this reason we test the systems with only small values of ψ.

For brevity, we only include plots of the spectrum for the Fourier spectral method,

Eq. (101), for the linearised STFE, and the finite difference scheme, Eq. (106), for the

full STFE in the main body of the text, plots of the spectrum evolution for other methods

are all located in Appendix. (B). We see in Figure. (5) and Figure. (6) both capture the

spectrum effectively under small timestep sizes (in this case around 1×10−11). It is impor-

tant to note however that the plot in Figure. (5) showing the spectrum evolution for the

non-linear system is cropped to the first 800 wavenumbers. In Figure. (9), Appendix. (B),

we see that the method does not capture the evolution of the largest wavenumbers so well.

While we do not expect the linear system to be full representative of the nonlinear system,

the rapid decrease to zero in the larger wavenumbers has the appearance of being an arti-

fact of the method rather than a physical phenomenon. The Spectral scheme, Eq. (110),

also suffers from these artifacts.

Figure 5: Spectrum evolution in Eq. (53) (solid lines) and RMS of 50 numerical realisations
(dashed lines) from the scheme in Eq. (106) with ∆t = 1 × 10−11 and 512 spatial grid
points.

This is similar in the linear case. While Figure. (6) shows the full spectrum, illustrating

that for this small timestep (1 × 10−11), the simple spectral approach, Eq. (101), for the

linear system captures the full spectrum effectively, we see in Figure. (10) that it fails to

capture the full spectrum for larger timestep values. Integrating the deterministic part of

the equation analytically, Eq. (102), does not remedy this, in fact, it is seen in Figure. (11)

that it is less effective than simple Euler integration, failing to capture the latter part of

the spectrum completely for larger timestep values. Performance of the nonlinear methods

under larger timestep values is found to be similar¿ The evolution of smaller wavenumbers
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is captured effectively while there are artifacts in the evolution of larger wavenumbers.

Qualitatively, the reason for failure of the methods to capture the large wavenumbers

is because the deterministic part of the equation acts as a relaxation of order 4 in the

wavenumber for each of the Fourier modes, while the effects of the noise are only order 1

in the wavenumber. So if the timestep is too large, the modes for the larger wavenumbers

are instantly relaxed, and the cumulative effects of the noise are unable to develop. The

only method that does not suffer from this problem is the analytical method, Eq. (103).

We see in Figure. (12) that this method successfully captures all parts of the spectrum

evolution for our larger timestep value. This is not surprising since it is essentially an

analytical solution to the system. However, this illustrates that the approximation of the

stochastic integral being used can be improved substantially. This is a potential area for

future development in this work.

Figure 6: Spectrum evolution in Eq. (53) (solid lines) and RMS of 100 numerical realisa-
tions (dashed lines) from the scheme in Eq. (101) with ∆t = 1 × 10−11 and 512 spatial
grid points.

4.4 Summary

In this section we derived implicit Finite difference schemes for the linearised and full thin

film equation, along with an implicit spectral scheme for the linearised thin film equation

and a semi-implicit pseudo-spectral scheme for the full thin film equation. To verify these

methods we benchmarked them against a known result for the evolution of capillary waves

due to thermal fluctuations. Now that we are confident that all of these schemes work, we

briefly evaluate each of the schemes.

For the linear system, we again find the spectral scheme to be superior. Specifically the

spectral scheme based off the analytical solution to the linear system. It is not surprising

that this method captures the evolution of the spectrum most effectively. We find the
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spectral schemes that do not use this analytical solution and the finite difference scheme

are roughly as effective as each other.

For the full thin film equation, the finite difference method is superior for many reasons.

The first is that it is a fully implicit method, in comparison to the pseudo-spectral method

which is only semi-implicit. This leads to the finite difference scheme having slightly better

stability properties than the pseudo-spectral scheme. This will be particularly important

in the next section where we study ruptures in this films. We also choose to use the finite

difference scheme for practical reasons. Since deriving finite difference schemes is easier in

the presence of non-linearities, the finite difference scheme is more adaptable. For example

we may wish to consider the effects of disjoining pressure as means for rupture in addition

to thermal fluctuations, and adding this term is much easier when using the finite difference

method. Furthermore, since both the finite difference scheme and the pseudo-spectral

scheme fail to capture the evolution of the larger wavenumbers at practical timesteps, the

claim of ‘exponential convergence’ for the spectral method is less convincing than in the

deterministic case, even if the meaning of this in the context of stochastic PDEs is less

clear. For these reasons we will be using the implicit finite difference scheme derived in

Sec. (4.2.1) when exploring ruptures in thin liquid films in the next section.
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5 Ruptures in Thin Fluid Films

Spontaneous rupture is a frequently observed phenomenon in thin liquid films. Its mech-

anisms are of interest due to its wide reaching applications. In the deterministic setting,

the film is made linearly unstable through the addition of Van der Waals forces, otherwise

known as ‘disjoining pressure’ [6]. Recently, thermal fluctuations have been investigated as

a mechanism for the destabilisation of linearly stable films to the point of a Van der Waals

induced rupture [15]. Here, we investigate the viability of thermal fluctuations alone as a

mechanism for ruptures in thin liquid films.

We cover the analytical results for the rupture profile and the expected time taken for

the film to rupture derived in [15], and attempt to verify these results computationally.

However, rupture in thin fluid films is a rare event and using Monte-Carlo methods for

computing waiting times for rupture is either computationally infeasible or has very high

variance for small noise values. We suggest the ‘importance splitting’ method for sampling

instances of the rare event and estimating its waiting time more efficiently than standard

Monte-Carlo. We also propose the use of Markov-Chain approximation, a method for

efficiently capturing macroscopic properties of the system.

5.1 Rare Event Theory for Ruptures in Thin Films

We would first like to derive the expected rupture profile for a rupture caused entirely

by thermal fluctuations. To do this we follow the method used in [15]. We begin by

recalling the stochastic gradient flow form of h given in Eq. (42). This characterises the

evolution h as begin forced down the direction of greatest descent of H(h) subject a to

mass conservation and mass conserving thermal fluctuations. The maximum likelyhood

rupture profile of h is therefore the profile that minimises the energy functional H subject

to mass conservation. In the limit ψ → 0, the expected rupture profile converges to this

as well. We derive the optimal rupture profile using Lagrangian optimisation as follows.

We seek the profile h : [0, 1] → R with h
(
1
2

)
= 0 that minimises the energy functional H

given by

H(h) =

∫ 1

0

1

2
(∂xh)

2dx, (111)

subject to mass conservation and periodicity of derivatives up to order 4. That isM(h) =
∫ 1
0 (h− h0)dx = 0,

∂αxh(0, t) = ∂αxh(1, t) for all α ∈ {0, . . . , 4} .
(112)

It is clear that such a profile h will be symmetric about x = 1
2 . We use this to simplify

the problem, writing H(h) = 2
∫ 1

2
0

1
2(∂xh)

2dx and M(h) = 2
∫ 1

2
0 (h − h0)dx. With this

assumption we can also conclude that ∂αh(0, t) = 0 for each α ∈ {0, . . . , 4}. The solution
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to this minimisation problem will be a critical point of the Lagrangian

L(h) = 2

∫ 1
2

0

1

2
(∂xh)

2dx− 2λ

∫ 1
2

0
(h− h0)dx. (113)

Note that the meaning of L has changed from its original use as the spatial differential

operator.

Let δh be a periodic perturbation that is symmetric about x = 1
2 with δh

(
1
2

)
= 0. Ignoring

higher order terms of δh we see that

L(h+ δh)− L(h) = 2

∫ 1
2

0

1

2
(2∂xδh∂xh) dx− 2λ

∫ 1
2

0
(δh)dx (114)

= 2

∫ 1
2

0
−∂2xhδh− λδhdx, (115)

where to have used integration by parts to deal with the first term of the right hand side.

This gives the first variation of L to be

δL
δh

= −2∂2xh− 2λ. (116)

Setting this equal to zero and solving for h we obtain that h(x) = 6h0(x + 1
2)(

1
2 − x) for

x ∈ [0, 1/2]. Reflecting about x = 1
2 , we obtain the expected rupture profile

E[h(x)] = 6h0 |x− 1/2| (1− |x− 1/2|) . (117)

We also note the result for expected rupture time found in [15]. It is found that the

expectation of the rupture time, τ , has the form

E[τ ] = Ce
6h20
ψ . (118)

We see in Figure (7a) that the our computational estimate for the rupture profile ap-

proaches the analytical solution as the noise strength is decreased. However, the experi-

mental expected rupture time seen in Figure (7b) does not fit the theoretical result so well.

While the relationship between expected rupture time and 1
ψ is found to be exponential,

the exponent is not as high as that predicted by the rare event theory. It is possible that

this is because the value of ψ is not small enough such that we are in the rare events

regime. Testing smaller values of ψ with a Monte-Carlo approach is not feasible without

additional computing power. For this reason we propose the use of sampling methods to

allow us to observe the rare event more efficiently for small values of ψ.

An established method used in the sampling of rare events is importance splitting [2]. This

is where the probability of a rare event is estimated by defining a nested sequence of less
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(a) Mean rupture profiles from 100 Monte Carlo realisations of the full STFE.

(b) Mean rupture times from 100 Monte Carlo realisations of the full STFE.

Figure 7

rare events and computing the conditional probability of each event given the previous

one. In our case, the rare event in question is the rupture of the tin film by time T . We

do not address the implementation of importance splitting in this report for brevity. We

point the reader to [16] and [2] for mathematical formulation, analysis and implementation

of importance splitting. When implemented appropriately, importance splitting gives an

unbiased estimate for the probability of the rare event with lower variance than a Monte-

Carlo approach with an equal number of samples. We choose instead to develop the idea

of Markov Chain approximation.
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5.2 Markov Chain Approximation

While importance splitting allows us to sample rupture profiles and estimate the prob-

ability of rupture by a certain time, there are other properties we might like to capture

about the film on its way to rupture. For example we might wish to estimate a proba-

bility distribution for the rupture time rather than just an expected rupture time. We

might also like to find an expected path of hmin over time. The proposed method, Markov

chain approximation, allows these things to be done. Using Markov chains to approxi-

mate stochastic systems is not a concept original to this work. However, to the author’s

knowledge, the application of the to systems with absorbing states is novel. As before,

we aim to approximate the stochastic process (hmin(t) : t ≥ 0) over time. While hmin is a

continuous time stochastic process, we will instead aim to approximate the discrete time

stochastic process
(
H(j) : j ∈ N

)
defined by H(j) = hmin

(
t̃j
)
for uniform sample times

t̃j = j∆̃t, with ∆̃t being the sample interval, not necessarily equal to the timestep ∆t used

in our numerical methods.

Assuming the film is initially in equilibrium, h(x, 0) = 1 for each x ∈ [0, 1], we see thatH(j)

takes values in [0, 1], where we always have H(0) = 1. The state H(j) = 0, corresponding

to the rupture of the film, is referred to as an absorbing state. An absorbing state of a

stochastic process, for our purposes, is a subset A of the state space I such that P(H(i) ∈
A|H(j) ∈ A) = 1 for all i ≥ j. In or case we see that H(j) = 0 is absorbing since it

corresponds to the end of the simulation.

If we know the values H(j) = y(j) for j = 1, . . . , n − 1, then H(j) is a random variable

completely determined by a probability density function g, in the sense that for any

0 ≤ a < b ≤ 1 we have

P
(
H(n) ∈ [a, b]

∣∣H(j) = y(j) for j = 1, . . . , n− 1
)
=

∫ b

a
g(x)dx, (119)

The first approximation we make on H(j) is to replace it with a discrete state stochastic

process
(
H̃(j) : j ∈ N

)
. To do this we choose any δ > 0 and partition the interval [−δ, 1+δ]

into N + 2 intervals (In)
N+1
n=0 defined by the sequence 0 = x0 < x1 < · · · < xN = 1, where

I0 = [−δ, 0], IN+1 = [1, 1 + δ], In = (xn−1, xn] for n = 1, . . . , N − 1 and IN = (xN−1, xN ).

The extension by δ is only so that the initial state H(0) and the absorbing rupture state

have their own intervals. We will refer to these intervals as ‘bins’.

We then define the approximating discrete state stochastic process
(
H̃(j)

)
by H̃(j) =∑N+1

k=0 k1Ik , i.e. the value of H̃
(j) is the index of the bin containing H(j). In the same sense

as with the continuous state process, if we know the values H̃(j) = y(j) for j = 1, . . . , n−1,

then H̃(j) is a random variable completely determined by a probability mass function
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g̃ : {0, . . . , N + 1} → R in the sense that

P
(
H̃(j) = k

∣∣H̃(i) = y(i) for i = 1, . . . , n− 1
)
= g̃(k). (120)

Note that up to this point, we have not made any approximations on H, we have recast it

into a discrete form H̃, but this is constructed so that it completely captures the behaviour

H in its discrete setting. The main approximation we make is known as the Markov

projection. To define this we quote almost directly from [10]. To begin with, at timestep

j we define the first order transition matrix P(j) by(
P(j)

)
mn

= P
(
H̃(j) = n

∣∣H̃(j−1) = m
)
. (121)

Then Markov projection of H̃ is the Markov process H̄ defined by H̄(0) = H̃(0),

P
(
H̄(j) = n

∣∣H̄(j−1) = m
)
=
(
P(j)

)
mn

for j ∈ N>0 and m,n ∈ {0, . . . , N + 1} ,
(122)

i.e. the Markov projection H̄ is Markov process with the same transition probabilities and

initial distribution as H̄. Since a Markov chain is uniquely defined by its initial distribution

and transition probabilities, the Markov projection is unique. Ignoring time dependence

past the first order in H̃ makes finding the evolution of the distribution of H̄ very easy.

Given an initial distribution π̄(0), the distribution π̄(j) of H̄(j) is given by

π̄(j) = Πjk=1P
(k)π(0) for every j ∈ N. (123)

Now we must ask whether the Markov projection H̄ accurately captures the behaviour of

H̃. In fact H̄ is first order equivalent to H̃ [10]. This means that given the same initial

distribution π̄(0) = π̃(0) = π(0), we have

π̃(j) = Πjk=1P
(k)π(0) = π̄(j) for every j ∈ N. (124)

So H̄ accurately captures the evolution of the distribution of H̃. This is sufficient for the

purposes of estimating waiting times for rupture and even in the expected path of H̃ over

time, since these are only dependant on the evolution of its distribution.

Now that we have argued for the validity of the method, we will show how it can be used

to estimate waiting times for rupture.
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5.2.1 Estimating Rupture Times

If we have the transition matrices P(j) for every j ∈ N, we can compute the expected

rupture time directly as

E[τ ] =
∞∑
j=1

t̃j

[
π
(j)
N+1 − π

(j−1)
N+1

]
. (125)

Of course we do not have access to all of these, since we can only run the simulation for

finite time. Additionally, computing the transition matrices for every j ∈ N would not save

any computation time, since to compute the transition matrices for time T , a sufficient

number of instances of H must be simulated from time j = 0 to j = T to estimate the

transition probabilities.

Instead of doing this, we note that it can be seen experimentally that the first order

transition matrix P(j) of H̃(j) converges to a steady state P∞. That is, for sufficiently

large j, it is reasonable to approximate Pj ≈ P∞. The Markov chain with transition

matrix P(∞) is an absorbing Markov chain [17, Chapter. 3].

Choosing the time index T as the cut off point after which we make the assumption

of constant transition probabilities, for j > T we can approximate the evolution of the

distribution, π(j), as

π(j) = (P∞)j−T ΠTk=1P
(k)π(0) (126)

= (P∞)j−T π(T ). (127)

Let
(
G(j) : j ∈ N

)
be the Markov chain with transition matrix P∞ and initial distribution

π(T ). The state G(j) = 0 is an absorbing state of this Markov chain. Let Q denote the

transient part of P∞ obtained by removing the row and column of P∞ associated with the

absorbing state. The fundamental matrix of the Markov chain is given by F = (I−Q)−1.

It is a known result that the sum of the elements on the ith row of F gives the expected

number of timesteps before reaching the absorbing state given the initial state i [17,

Chapter. 3]. That is

E
[
τG|G(0) = i

]
=

N+1∑
j=1

Fij , (128)

where τG is measured in number of timesteps. Since the initial distribution of G is π(T ),

we see that the expected absorption time of G is

E [τG] =

N+1∑
i=1

π
(T )
i

N+1∑
j=1

Fij , (129)

To find the expected absorption time of H̄, we must also add on the contribution from

absorptions that happen before time T . Adding in this contribution gives us our expected
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rupture time

E[τ ] =

T∑
j=1

t̃j

[
π
(j)
N+1 − π

(j−1)
N+1

]
+ E [τG] ∆̃t. (130)

This gives a convincing mathematical argument for the validity of approximating the

stochastic process
(
H̃(j) : j ∈ N

)
with its Markov projection

(
H̄(j) : j ∈ N

)
. We are

left with the problem of accurately and efficiently finding the Markov projection of(
H̃(j) : j ∈ N

)
.

5.2.2 Finding the Markov Projection

Estimating the Markov projection of H̃ reduces to the problem of finding the first order

transition matrix P(j) for j = 1, . . . , T . At sample time j, we can estimate the probabilities

P
(
H̃(j) = n|H̃(j−1) = m

)
by taking M i.i.d. samples H̃

(j)
1 , . . . , H̃

(j)
M from the distribution

D
(
H̃|H̃(j−1) = m

)
and use the estimator

P
(
H̃(j) = n|H̃(j−1) = m

)
≈ 1

M

M∑
i=1

δ
nH̃

(j)
i

, (131)

This leaves the question of obtaining the samples. The simplest way that this can be done

is through running simulations from time t = 0 to t = t̃j until we have M samples for

which H̃(j−1) = m. However, this is inefficient, in fact, it renders the method much slower

than even our Monte-Carlo approach for obtaining information about the process.

A faster method is to dynamically reuse data from the old simulations. This will be

described by example starting from time t0. We know that H(0) = 1 (H̃(0) = N + 1),

since the film always begins in equilibrium. Computing the transition matrix P(1) is

simple. We run M simulations until time t̃1 and estimate P with Eq. (131). Since our

initial distribution is π(0) = (0, . . . , 0, 1), entries of P(1) outside of its last column are not

important. Along with an estimate for P(1), we also haveMi samples from the distribution

D(H̃|H̃(1) = i) for each i ∈ {0, . . . , N + 1} from these simulations, where
∑N+1

i=0 Mi =M.

Note that when we refer to ‘samples’ from the distribution D(H̃|H̃(1) = i), we refer not

only to the value of H̃(1), but all of the information included with it, i.e. the full height

profile of the film that gave this value of H̃(1).

Now to approximate P(2). For simplicity of this explanation, assume that we have at least

1 sample in each bin at time t1. In practise this will not be the case, but we will ignore bins

with no samples in at this point since if they have no samples it is very unlikely for them

to be entered this early anyway and they will not have a large effect on the distribution

of H.

To estimate
(
P(2)

)
mn

, we would like to run M simulations drawn from the distribution

D(H|H(1) = m). However, we only have Mm samples from this distribution to draw from.
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For the sake of performance we sacrifice the independence of these samples. The most

simple approach is to draw only from this collection of Mm samples, accepting that some

will be duplicates. We can improve this slightly by artificially adding to the samples by

also adding samples from nearby timesteps. That is, if ∆̃t ≫ ∆t, it may be reasonable

to also add samples from timesteps shortly before t̃1. If these strategies fail, it may be

necessary to simply perform more than M simulations starting from t0.

Estimating P(3) should be similar to the general case of estimating P(j) for any j > 2.

When estimating P(2), we ranM simulations drawn from the distribution D(H|H(1) = m)

for each m ∈ {0, . . . , N + 1}. This means that some bins for t̃2 will contain more than M

samples, and some will contain less. Those that contain less may artificially have samples

added as explained earlier. The key thing to note is that when we ran M samples from

each bin to estimate P(2), the experimental distributions in each bin are biased towards

those bins that had more artificial samples added. This is counteracted by recording which

bin each sample in the experimental distribution came from in the previous timestep and

weighting the distribution of drawn samples according to π(2).

5.2.3 Simple SDE Test Case

Due to time constraints, the Markov chain approximation method was not applied to the

stochastic thin film system. However, as a proof of concept, we will apply the method to

estimate the transition times for the simple SDE

dX = (X −X3)dt+
√
ϵdW, (132)

where ϵ > 0. The deterministic part of this SDE is a potential well pushing the value of

X towards ±1. As ϵ is decreased to 0, transition from X = −1 to X = 1 and vice versa

becomes a rare event. We compute the transition times for this SDE experimentally, using

the Euler-Maruyama method for time integration.

When using the Markov chain approximation method, we use 40 uniformly sized bins for

the interval [−1, 1]. We aim to study transition from X = −1 to X = 1, treating this

as an absorbing state. We note that the values of X are not confined to this interval,

or any finite interval, however, for small ϵ, the event of X taking values outside the

interval [−L,L] for sufficiently large L becomes extremely unlikely and may be ignored.

The values ϵ ∈ [0.3, 1.3] and added the ‘endcap’ bins [−10,−1] and [1, 10] to contain

the non-transitional behaviour of X. We know that this stochastic process has no long

term dependencies, so we assume that the first order transition matrix is constant, i.e.

P (t) = p∞ for all t ∈ N. To draw samples from the transitional bins we assume that

X is uniformly distributed throughout each bin. When drawing from the ‘endcap’ bin

[−10,−1], we approximate D(X|X < −1) by saving each of the visited X values in this

bin and drawing randomly from this list. We see that even with these somewhat arbitrarily
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Figure 8: Experimental transition times of SDE given by equation 132.

chosen heuristics, we see in Figure (8) that the Markov chain approximation captures the

transition times of the SDE very well, although further testing will be required to verify

this method in general, and there is no guarantee for its efficacy when applied to more

complicated stochastic processes such as the thin film system.
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6 Conclusion

6.1 Summary

To begin with, we introduced the theory of thin liquid films in the deterministic setting,

covering some of the known results for thin liquid films covered by [7] [19]. This included

applying the lubrication approximation to the Navier-Stokes equations, we obtained a

nonlinear fourth order evolution equation for the height profile of the film. Linearising

this equation, we found that under small perturbations we should expect exponential decay

in each of the Fourier modes of the height profile. We then moved to the stochastic setting,

where a multiplicative noise term is added to the thin film equation. We then proceeded as

in, the long term evolution of the spectrum took the form of a power law in the frequencies

of the Fourier modes rather than the exponential decay seen in the deterministic case.

We then developed numerical schemes to simulate the deterministic evolution of the film.

Schemes using the finite difference method and the Fourier spectral method were con-

structed to solve the linearised thin film equation and the full thin film equation. In the

linear case this came down to solving a linear system of equations for both approaches. For

the nonlinear system, our discretisation resulted in a non-linear system of equations which

the Newton-Kantorovich [20] method had to be employed to solve. In the pseudo-spectral

approach to solving the non-linear equation, we found that anti-aliasing was absolutely

necessary when computing the nonlinear terms, since without it, computing the Jacobean

of the residual function is not possible. Comparing the methods, we found the spectral

approach to be much better for simulating the linearised system due the fact that it was

essentially an analytical solution. We found the spectral method to be only slightly more

effective for the nonlinear system, since despite having much better convergence proper-

ties, it was much less adaptable, harder to implement and has a higher computational

complexity with the number of gridpoints than the finite difference scheme.

These methods were then adapted to find approximate solutions to the stochastic thin

film equation. The analytical result for the evolution of the spectrum of the film was

used as a test to verify the validity of the methods, along with being a benchmark to

test their effectiveness. In the finite difference linear case, the noise was treated using an

operator splitting approach, while for the spectral method it was possible to exploit an

analytical solution to the stochastic thin film equation, as done in [15]. Unsurprisingly,

this analytical approach was much more effective at capturing the spectrum evolution at

a wide range of timesteps. While both methods were effective for very small timestep

values, the finite difference approach was unable to capture the spectrum evolution for

larger timestep values where the analytical spectral approach succeeded. For the nonlinear

system, no such analytical solution exists, so we do not see the same advantage when

using the spectral method. In fact, the multiplicative noise term must be added explicitly

after an implicit time integration step when using the spectral method, since no fast
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method for anti-aliasing terms involving factional powers could be found. In the finite

difference approach, it was possible to treat the noise term implicitly by including it in

the residual function and applying the Newton-Kantorovich method. For this reason, and

for its superior adaptability, the finite difference approach was found to be superior for

simulating the stochastic thin film equation.

After verifying these methods, we chose to study ruptures in thin fluid films. We began

by discussing the established rare event theory for rupture, using the gradient flow form of

the evolution of h we repeated the strategies in [15] to derive an expected rupture profile

in the limit of small noise strength, along with making note of a result for the expected

waiting time of rupture. We attempted to verify these results via a Monte-Carlo approach.

The convergence of the rupture profile with decreasing ψ was promising, however the

experimentally observed waiting times did not fit the the theory. We hypothesise that

this is due to the value of the noise strength being too large for the rare event theory

to apply. The Monte-Carlo approach becomes computationally infeasible in the limit of

vanishing noise strength due to the exponential relationship between rupture time and

the reciprocal of the noise strength. To study thin film rupture under these smaller noise

strength values, we proposed the use of importance splitting [16] to observe the rare event.

We also developed the idea of applying Markov chain approximation to the system [10] as

a means for estimating the waiting times. We demonstrated the viability of the method on

a simple stochastic system on which it was seen to well approximate its transition times.

6.2 Future Work

The work done here leaves much to be improved upon and developed. We intend to

implement the proposed sampling methods, importance splitting and Markov chain ap-

proximation, onto the thin film system to test smaller noise strength values, with the intent

of reproducing the established theoretical results. This will not be without challenges. En-

suring that the sampling methods draw appropriately from the distribution in an efficient

way is something that will require development in its own right. These sampling methods

will allow us to observe the rare event and estimate its properties more frequently with

the use of less computational resources.

Computational efficiency can be improved in other areas too. Inspired by the effectiveness

of the semi-analytical scheme for the linearised thin film equation, we hope to implement

higher order methods which accurately capture the development of the film for larger

timestep values. This will greatly improve the rate at which rare events such as rupture

may be observed.

It is also possible that the rare event theory is not effectively reproduced by our exper-

iments for reasons other than the noise strength value being too high. One such reason

could be the choice of h = 0.05 as the cut off point for rupture. It is possible that setting a

lower cut-off point will lead to a larger value in the exponent for the relationship between
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rupture time and the reciprocal of the noise strength. This was not tested in this work be-

cause, with the timestep and grid sizes used, smaller cut off points often lead to the value

of hmin ‘overshooting’ to values below zero. To test smaller cut-off values, a scheme that

is adaptive in the grid size and timestep must be used. A possible branch of future work

would be implementing such a scheme and using it to test these smaller cut-off values.
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A Interpretation of Derivatives of Spatially Uncorrelated

Variables

Consider the gaussian random variable N with mean E[N (t)] = 0 and correlation

E[N (t)N (t′)] = δ(t − t′). This may be interpreted as the derivative of the Wiener pro-

cess Wt in the sense that for a given function f ∈ L2([0, T ]), we interpret the integral∫ T
0 f(t)N (t)dt as ∫ T

0
fNdt =

∫ T

0
fdW (133)

where
∫ T
0 fdW is Ito’s stochastic integral. Formally, we would like to interpret ∂tN (t) in

the same sense, so that we can write∫ T

0
f∂tNdt =

∫ T

0
fd(∂tW ). (134)

To do this, we must prescribe a meaning to the right hand side. One way that we can do

this is to define the stochastic process W h by W h(t) = W (t+h)−W (t)
h for h > 0. We would

like to define ∫ T

0
f∂t(dW ) = lim

h→0

∫ T

0
fdW h (135)

Now we must compute the value of
∫ T
0 fdW h. Let Pn be a sequence of partitions of [0, T ]

with |pn| → 0 as n→ ∞. Then

∫ T

0
fdW h =

Nn∑
j=1

f(tj)

[
(W (tj + h)−W (tj))− (W (tj−1 + h)−W (tj−1))

h

]
(136)

=
1

h

Nn∑
j=1

f(tj) [W (tj + h)−W (tj−1 + h)] +

Nn∑
j=1

f(tj) [W (tj−1)−W (tj)]


(137)

=
1

h

Nn∑
j=1

(f(tj − h)− f(tj)) [W (tj)−W (tj−1)] (138)

=

∫ T

0
−f(t)− f(t− h)

h
dW (139)

And taking the limit as h→ 0, we obtain a suitable definition∫ T

0
fd(∂tW ) = −

∫ T

0
f ′(t)dW. (140)
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B Efficacy of Methods for Capturing the Full Spectrum

Evolution

Figure 9: Spectrum evolution in Eq. (53) (solid lines) and RMS of 50 numerical realisations
(dashed lines) from the scheme in Eq. (106) with ∆t = 1×10−11 and 512 spatial grid points.
Cropped to latter half of wavenumbers to show failure of the method when capturing the
largest wavenumbers.
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Figure 10: Spectrum evolution in Eq. (53) (solid lines) and RMS of 50 numerical realisa-
tions (dashed lines) from the scheme in Eq. (101) with ∆t = 1× 10−9 and 128 spatial grid
points.

Figure 11: Spectrum evolution in Eq. (53) (solid lines) and RMS of 50 numerical realisa-
tions (dashed lines) from the scheme in Eq. (102) with ∆t = 1× 10−9 and 128 spatial grid
points.
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Figure 12: Spectrum evolution in Eq. (53) (solid lines) and RMS of 50 numerical realisa-
tions (dashed lines) from the scheme in Eq. (103) with ∆t = 1× 10−9 and 128 spatial grid
points.
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